京都大学 情報学研究科 数理工学専攻 2023年8月実施 凸最適化
Author
Casablanca
Description
日本語版
English Version
Let
where the decision variable of problem P is the vector
Answer the following questions (i) and (ii)
(i) write out a dual problem of problem P.
(ii) Show that problem P has an optimal solution.
Let
Answer the following quetions (iii) and (iv).
(iii) Show that
(iv) Suppose that
where the decision variable of problem Q is the vector
Kai
(i)
We have Lagrangian:
Obtain Lagrange dual function:
Then we write the dual problem D:
(ii)
Since
(iii)
For any
for
c^\top (\theta y_1 + (1-\theta)y_2) = \theta c^\top y_1 + (1-\theta)c^\top y_2 \leq c^\top \widetilde{y}
\begin{aligned} Q:&\text{Minimize} &\frac{1}{2} x^\top x - c^\top x \ &\text{subject to} &x \succeq \mathbf{0}, \mathbf{1}^\top x = 1 \ \end{aligned}
\text{KKT-conditions: } \left{ \begin{aligned} x - c - \lambda - \mu \mathbf{1} &= 0 \ \lambda \succeq 0, -\lambda^\top x &=0 \ x &\succeq 0\ \mathbf{1}^\top x &= 1 \end{aligned} \right.
x^* = [\frac{1}{n} , \frac{1}{n}, \ldots , \frac{1}{n}]^\top , \lambda = \mathbf{0}, \mu = [\frac{1}{n} - c_1, \frac{1}{n} - c_1, \ldots, \frac{1}{n} - c_1]^\top