跳到主要内容

京都大学 情報学研究科 数理工学専攻 2020年8月実施 グラフ理論

Author

祭音Myyura

Description

日本語版

を節点集合 , 枝集合 から成る単純有向グラフとし, の各枝 に実数値の容量 を与えて得られるネットワークとする. 節点の部分集合 に対し, 内の点から 内の点へ向かう枝の集合を と記す. 非負実数全体の集合を で表す. 指定された二点 に対し,流量保存則 および容量制約 を満たす関数 フローと呼び,その流量

で定める.また, を満たす節点の部分集合 カットと呼び,その容量

で定める.以下の問いに答えよ.

(i) 任意の フロー カット に対し,等式

が成り立つことを証明せよ.

(ii) 与えられた フロー に対して定められる残余ネットワーク の作り方を説明せよ.

(iii) 残余ネットワーク において, から への有向路が存在するとき,そのひとつを とする. 上の枝の における容量の最小値を とするとき, には流量が である フローが存在することを証明せよ.

(iv) 残余ネットワーク から への有向路をもたないとき, において から到達可能な節点の集合を とする.このとき, である任意の集合 に対し が成り立つことを証明せよ.

English Version

Let be a simple directed graph with a vertex set and an edge set , and let be a network obtained from by assigning a real value to each edge as its capacity. For vertex subsets , let denote the set of edges that leave a vertex in and enter a vertex in . Let denote the set of nonnegative reals. For two designated vertices , an -flow is defined to be a mapping which satisfies (flow conservation law) and (capacity constraint), and its flow value is defined to be

An -cut is defined to be a vertex subset such that and , and its capacity is defined to be

Answer the following questions.

(i) Prove that for any -flow and any -cut

holds.

(ii) For a given -flow , show how to construct its residual network .

(iii) For an -flow in , assume that there is a directed path from to in the residual network . Let denote the minimum capacity of an edge in in . Prove that has an -flow whose flow value is .

(iv) For an -flow in , assume that there is no directed path from to in the residual network . Let denote the set of vertices that are reachable from in . Prove that holds for any set with .

Kai

(i)

We can rewrite the flow conservation law for any node as

then we have

Expanding the right-hand summation and regrouping terms yields

The two summations and are actually the same, since for all vertices , the term appears once in each summation. therefore

(ii)

We define the residual capacity by

and the edge set by

(iii)

Let be defined as follows:

We prove that is a flow and

First we verify that obeys that capacity constraint.

For an edge , we have

For an edge , we have

Hence the capacity constraint holds.

Next we prove the flow conservation constraint. For a vertex , obviously the flow conservation constraint holds if . Hence we focus on the case that .

For a vertex , since is a simple path, there are exactly two edges and in that adjacent to .

if and , then we have

if and , then we have

Similarly for the case and the case . Hence the flow conservation constraint holds.

Finlly, we compute the value . Same as the proof of flow conservation constraint, there are two cases for the edge in corresponds to the edge adjacent to in of .

It is easy to compute that in both cases we have

Therefore, has an -flow whose flow value is .

(iv)

By 京都大学 大学院 情報学研究科 数理工学専攻 2022年実施 グラフ理論 (i) and (iii) we know that is actually a minimum -cut.

Hence for any any set with , we have .