跳到主要内容

東京工業大学 工学院 電気電子系 2021年8月実施 数学1

Author

祭音Myyura

Description

が有限で絶対積分可能な実関数 に対して,フーリエ変換

とする。ただし, を虚数単位とし,関数 ,そのフーリエ変換 は, 階微分可能とする。以下の問に答えよ。なお,導出過程も示すこと。また,関数 の導関数 , をそれぞれ と表記してもよい。

(1) 次の関数 のフーリエ変換 を関数 のフーリエ変換 を用いて表せ。

(2) 関数 が次の微分方程式の解であるとき,関数 のフーリエ変換 が満足する微分方程式を示せ。ただし, は実数の定数である。

(3) 関数 が次の微分方程式の解であるとする。ただし, 以上の整数である。

(a) 関数 と表せるとき,関数 が満足する微分方程式を示せ。

(b) 上記の で求めた微分方程式の特殊解 は, 次のエルミート多項式とよばれる。 が満足する漸化式を求めよ。

Kai

(1)

(a)

(b)

(2)

(3)

(a)

式へ代入すると、

(b)

式に代入すると、

従って、